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Abstract—Zadeh’s seminal work in theory of fuzzy-information
granulation in human reasoning is inspired by the ways in which
humans granulate information and reason with it. This has led
to an interesting research topic: granular computing (GrC). Al-
though many excellent research contributions have been made,
there remains an important issue to be addressed: What is the
essence of measuring a fuzzy-information granularity of a fuzzy-
granular structure? What is needed to answer this question is
an axiomatic constraint with a partial-order relation that is de-
fined in terms of the size of each fuzzy-information granule from
a fuzzy-binary granular structure. This viewpoint is demonstrated
for fuzzy-binary granular structure, which is called the binary GrC
model by Lin. We study this viewpoint from from five aspects in
this study, which are fuzzy BINARY-granular-structure operators,
partial-order relations, measures for fuzzy-information granular-
ity, an axiomatic approach to fuzzy-information granularity, and
fuzzy-information entropies.

Index Terms—Fuzzy-information entropy, fuzzy-information
granularity, granular computing (GrC), partial-order relation.

I. INTRODUCTION

GRANULAR computing (GrC), which is a term coined
jointly by Zadeh and Lin [50], plays a fundamental role

in fuzzy-information granulation of human reasoning. Three
basic issues in GrC are information granulation, organization,
and causation. As it was pointed out in [48]–[51], the informa-
tion granulation involves decomposition of whole into parts, the
organization involves integration of parts into whole [15], and
the causation involves association of causes with effects. This
issue has been applied in relevant fields such as interval anal-
ysis, rough-set theory, cluster analysis, machine learning, and
databases.

A granule is a clump of objects drawn together by indis-
tinguishability, similarity, and proximity of functionality [11],
[12], [21], [31], [32], [49]. Granulation of an object leads to
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a collection of granules. A granular structure is a mathemati-
cal structure of the collection of granules, in which the inner
structure of each granule is visible (a granule is a white box),
and the interactions among granules are detected by the visible
structures [15]–[17]. Given these abstract concepts, an impor-
tant task is to establish a conceptual framework for GrC. For
our further development, we will briefly review several focuses
of attention in GrC. They include a measure of granularity [11],
[13], [14], [38], [39], [42], [45], information processing, in-
cluding databases [24], [25], a framework of GrC [15], [16],
[21], [34], [46], problem solving based on “granulate and con-
quer” principle and quotient theory [54], and multigranulation
view [22], [35], [36] and their applications. It can be seen from
the developments that GrC is evolving into a field of cross-
disciplinary study.

In GrC, the granulation of objects induced by an equivalent re-
lation is a set of equivalence classes, in which each equivalence
class can be regarded as an (Pawlak) information granule [4],
[30], [36]; the granulation of objects induced by a tolerance rela-
tion generates a set of tolerance classes, in which each tolerance
class can also be seen as a tolerance information granule [10],
[24], [35]. By using a general binary relation, objects are granu-
lated into a set of information granules, which is called a binary
granular structure. In GrC, one often needs to measure the
granulation degree of objects in a given dataset, which is called
information granularity.

In the viewpoint of GrC, information granularity of a granu-
lar structure is a measure of uncertainty about its actual struc-
ture [16], [49]. In general, the information granularity represents
discernibility ability of information in a granular structure. The
smaller the information granularity, the stronger its discerni-
bility ability [26]. How to calculate the information granular-
ity of a granular structure has always been an important is-
sue. To date, several forms of information granularity have
been proposed according to various views and targets [11],
[13], [14], [22], [38], [39], [42], [45]. Wierman [42] introduced
the concept of granulation measure to measure the uncertainty
of information in a knowledge base. This concept has the same
form as Shannon’s entropy under the axiom definition. Liang
et al. [13], [14] proposed information granularity in either com-
plete and incomplete datasets, which has been effectively ap-
plied in attribute significance measure, feature selection, rule
extraction, etc. Qian and Liang [38], [39] presented combina-
tion granulation with intuitionistic knowledge-content nature
to measure the size of information granulation in a knowledge
base. Xu et al. [45] gave an improved measure for roughness of
a rough set in rough-set theory proposed by Pawlak [29], which
is also an information granularity in a broad sense. In the above
forms of information granularity, the partial-order relation plays
a key role in characterizing the monotonicity of each of them.
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Recently, Qian et al. [34] presented an axiomatic definition of
information granularity in a knowledge base, in which several
existing forms of information granularity become its special
cases. From the axiomatic definition, we know that the size of
information granularity does not depend on the sizes of equiv-
alence classes (i.e., tolerance classes and maximal consistent
blocks) but on some array of these classes.

As we know, by using a fuzzy-binary relation, objects are
granulated into a set of fuzzy-information granules [3], [6],
[7]–[9], [41], which is called a fuzzy-binary granular struc-
ture, which is the basis of rough-approximation operations in
fuzzy-rough-set theory [1], [2], [23], [43]–[47]. In GrC based
on fuzzy-set theory, one often needs to measure the granulation
degree of objects in a family of fuzzy-granular structures, which
is called fuzzy-information granularity. Although many excel-
lent research contributions have been made in the context of
fuzzy GrC [52], [53], there remains an important issue to be ad-
dressed. What is the essence of measuring a fuzzy-information
granularity? As mentioned by Zadeh, in general, information
granularity should characterize the granulation degree of ob-
jects from the viewpoint of hierarchy [49]. This provides a point
of view that an information granularity should characterize hier-
archical relationships among fuzzy-binary granular structures.
To answer the question, in this investigation, we will develop
an axiomatic constraint with a partial-order relation which is
defined in terms of the size of each fuzzy-information granule.
The viewpoint is systematically demonstrated from five aspects
in this study, which include fuzzy-binary granular-structure op-
erators, partial-order relations, measures for fuzzy-information
granularity, an axiomatic approach to fuzzy-information granu-
larity, and monotonicity of information entropy.

Information entropy and information granularity are two main
approaches to measuring the uncertainty of a granular struc-
ture [13], [28], [40]. The entropy of a granular structure, as
defined by Shannon [40], gives a measure of the uncertainty
about its actual structure. Because that Shannon’s entropy is de-
fined by the probability of each equivalence class, it cannot be
used to measure the uncertainty of a fuzzy-granular structure.
For the consideration, Hu et al. extended Shannon’s entropy to
fuzzy-binary granular structures and used this variant to charac-
terize the uncertainty of fuzzy rough sets and fuzzy probability
rough sets [3], [6]. Conveniently, information entropy to mea-
sure uncertainty of a fuzzy-binary granular structure is called
fuzzy-information entropy, which denotes the size of informa-
tion content of a fuzzy-granular structure. Like the information
entropy, as defined by Shannon, the fuzzy-information entropy
of a fuzzy-binary granular structure should also possess the per-
formance of measuring the uncertainty about its actual structure.

This paper is organized as follows. Section II reviews sev-
eral basic concepts, such as Pawlak granular structures, toler-
ance granular structures, and fuzzy-binary granular structures.
Section III presents four fuzzy-binary granular-structure opera-
tors to generate new fuzzy-binary granular structures. Section IV
introduces three partial-order relations to characterize relation-
ships among fuzzy-granular structures. In Section V, we pro-
pose two measures to measure fuzzy-information granularity
of fuzzy-binary granular structures. Section VI develops an ax-
iomatic approach to fuzzy-information granularity, under which

several fuzzy-information granularity become its special forms.
In Section VII, we introduce the concept of fuzzy-information
entropy to measure information content of a fuzzy-binary gran-
ular structure and characterize its granulation monotonicity by
those partial-order relations proposed in Section IV. Finally,
Section VIII gives the concluding remarks.

II. PRELIMINARIES

In this section, we will review several basic concepts, such
as knowledge bases, information granules, granular structures,
and fuzzy-binary granular structures.

In rough-set theory, as Pawlak has defined, a knowledge base
is denoted by (U,�) = (U,R1 , R2 , . . . , Rm ), where Ri is an
equivalence relation [29]. U/R constitutes a partition of U ,
which is called a granular structure on U , and every equivalence
class is called a Pawlak information granule. In a broad sense,
an information granularity denotes average measure of Pawlak
information granules (equivalence classes) induced by R.

If Ri (i = 1, 2, . . . , m) is a tolerance relation, then (U,�) =
(U,R1 , R2 , . . . , Rm ) can be called a tolerance knowledge base.
Let similarity classes induced by a similarity relation (SIMR)
denote the family sets {SR (u) | u ∈ U}, which is the granular
structure induced by R. A member SR (u) from SIMR will be
called a tolerance information granule. In fact, {SR (u) : u ∈
U} is a binary neighborhood system (BNS) [15]–[22]. For a
tolerance knowledge base, in a broad sense, an information
granularity denotes average measure of tolerance information
granules (tolerance classes) induced by R [13], [33].

For the above two types of knowledge bases, one can uni-
formly represent the granular structure induced by P ⊆ � by
a vector K(P ) = (SP (x1), SP (x2), . . . , SP (xn )) [34], SP (xi)
is the tolerance class induced by an object xi ∈ U with respect
to P .

Above modes of information granulation in which the gran-
ules are crisp (c-granular) play important roles in a wide variety
of methods, approaches, and techniques. Important though it
is, crisp-information granulation has a major blind spot. More
specifically, it fails to reflect the fact that perhaps most gran-
ules of human reasoning and concept formation are fuzzy (f-
granular) rather than crisp [49]. Hence, generalization to fuzzy
cases is necessary.

Given a universe U, ˜R a fuzzy-binary relation on U , which is
often denoted by the following matrix:

M( ˜R) =

⎛

⎜

⎝

r11 r12 . . . r1n

r21 r22 . . . r2n

. . . . . . . . . . . .
rn1 rn2 . . . rnn

⎞

⎟

⎠
(1)

where rij ∈ [0, 1] is the similarity between xi and xj .
Some operations of relation matrices are defined as
1) ˜R1 = ˜R2 ⇔ ˜R1(x, y) = ˜R2(x, y);
2) ˜R = ˜R1 ∪ ˜R2 ⇔ ˜R = max{ ˜R1(x, y), ˜R2(x, y)};
3) ˜R = ˜R1 ∩ ˜R2 ⇔ ˜R = min{ ˜R1(x, y), ˜R2(x, y)};
4) ˜R1 ⊆ ˜R2 ⇔ ˜R1(x, y) ≤ ˜R2(x, y).
A fuzzy-binary relation generates a family of fuzzy-

information granules from the universe, which is called a
fuzzy-binary granular structure. The fuzzy-binary granular
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structure of the universe is defined as

K( ˜R) = (S
R̃
(x1), SR̃

(x2), . . . , SR̃
(xn )) (2)

where S
R̃
(xi) = ri1/x1 + ri2/x2 + · · · + rin/xn . S

R̃
(xi) is

the fuzzy-information granule (can be regarded as the fuzzy
neighborhood of xi) induced by xi , and rij is the degree of
xi equivalent to xj . Here, “+” means the union of elements.
The cardinality of the fuzzy-information granule S

R̃
(xi) can be

calculated with

|S
R̃
(xi)| =

n
∑

j=1

rij (3)

which appears to be a natural generalization of the cardinality
of a crisp set.

Given a family of fuzzy-binary granular structures (U, ˜�),
for uniform representation in this paper, we also de-
note the fuzzy-binary granular structure induced by ˜P ∈ ˜�
by K( ˜P ) = (S

P̃
(x1), SP̃

(x2), . . . , SP̃
(xn )), where S

P̃
(xi) =

pi1/xi + pi2/xi + · · · + pin/xi . In this case, the granular struc-
ture is a BNS [15]–[22]. In addition, let K(U) be the collection
of all fuzzy-binary granular structures on U .

In particular, for a fuzzy-binary granular structure K( ˜P ) =
(S

P̃
(x1), SP̃

(x2), . . . , SP̃
(xn )), if pii = 1 and pij = 0, j 	=

i, i, j ≤ n, then |S
P̃

(xi)| = 1, i ≤ n, and ˜P is called a fuzzy

identity relation, and we write as ˜P = ω; if pij = 1, i, j ≤ n,
then |S

P̃
(xi)| = |U |, i ≤ n, and ˜P is called a fuzzy universal

relation, which is written as ˜P = δ.

III. FUZZY-GRANULAR STRUCTURES

In the viewpoint of knowledge engineering, the operators on
fuzzy granular structures to generate new fuzzy-granular struc-
tures are very desirable. These granular structures generated
provide indispensable knowledge and find a basis in human rea-
soning based on a family of fuzzy-binary granular structures, in
which there is an underlying algebra structure. In fact, to solve
the problem in the context of (crisp) granular structures, Qian
et al. [34] proposed four operators among granular structures
and revealed the algebra structure of these granular structures
(lattice structure), which can be used to generate new granu-
lar structures. In this section, we extend the four operators to
fuzzy-binary granular structures to reveal this underlying alge-
bra structure and data mining from them.

In what follows, for this purpose, we construct four operators
in a family of fuzzy-binary granular structures.

Definition 1: Let K(U) be the collection of all fuzzy-binary
granular structures on two U,K( ˜P ),K( ˜Q) ∈ K(U) fuzzy-
binary granular structures. Four operators ∩,∪,−, and 
 on
K(U) are defined as

K( ˜P ) ∩ K( ˜Q) = {S
P̃ ∩Q̃

(xi) | S
P̃ ∩Q̃

(xi)

= S
P̃

(xi) ∩ S
Q̃

(xi)} (4)

K( ˜P ) ∪ K( ˜Q) = {S
P̃ ∪Q̃

(xi) | S
P̃ ∪Q̃

(xi)

= S
P̃

(xi) ∪ S
Q̃

(xi)} (5)

K( ˜P ) − K( ˜Q) = {S
P̃ −Q̃

(xi) | S
P̃ −Q̃

(xi)

= S
P̃

(xi)∩ ∼ S
Q̃

(xi)} (6)


K( ˜P ) = {
S
P̃

(xi) | 
SP̃
(xi)

=∼ S
P̃

(xi)} (7)

where xi ∈ U, i ≤ n, and ∼ S
P̃

(xi) = (1 − pi1)/xi + (1 −
pi2)/xi + · · · + (1 − pin )/xi .

Note: In (5), K( ˜P ) ∪ K( ˜Q) is not the union of two attributes
but the union of two fuzzy-binary granular structures. The ob-
jective of the operator ∪ is to obtain a much coarser fuzzy-
granular structure than K( ˜P ) and K( ˜Q). The proposed four
operators can be seen as intersection operation, union operation,
subtraction operation and complement operation in-between
fuzzy-binary granular structures, which are used to fine, coarsen,
decompose fuzzy-binary granular structures and calculate com-
plement of a fuzzy-binary granular structure, respectively. We
would like to point out that these operators proposed are nat-
ural generalizations of the four operators in a neighborhood
system [34].

Here, we regard ∩,∪,−, and 
 as four atomic formulas and
finite connections on them are all formulas. Through using these
operators, one can obtain new fuzzy-binary granular structures
via some known fuzzy-binary granular structures on U . From
Definition 1, one easily knows that these four operators ∩,∪,−
and 
 on K(U) are close.

In GrC, transformation among granular structures is an im-
portant issue which involves composition, decomposition and
transformation. In Definition 1, ∩ and ∪ operators can be used
to compose two fuzzy-binary granular structures to a new fuzzy-
binary granular structure, where one can get a much finer fuzzy-
granular space using ∩ operator, and one can form a much
coarser one using ∪ operator. The operator can be understood as
a decomposition mechanism and be used to generate much finer
fuzzy-binary granular structures. The operator 
 may be viewed
as one of mappings between fuzzy-binary granular structures,
which can transform one fuzzy-binary granular structure into
another fuzzy-binary granular structure.

In what follows, we investigate several fundamental algebra
properties of these four operators.

Theorem 1: Letting ∩,∪ be two operators on K(U), we then
have the following.

1) K( ˜P ) ∩ K( ˜P ) = K( ˜P )

K( ˜P ) ∪ K( ˜P ) = K( ˜P ).

2) K( ˜P ) ∩ K( ˜Q) = K( ˜Q) ∩ K( ˜P )

K( ˜P ) ∪ K( ˜Q) = K( ˜Q) ∪ K( ˜P ).

3) K( ˜P ) ∩ (K( ˜P ) ∪ K( ˜Q)) = K( ˜P )

K( ˜P ) ∪ (K( ˜P ) ∩ K( ˜Q)) = K( ˜P ).

4) (K( ˜P ) ∩ K( ˜Q)) ∩ K( ˜R) = K( ˜P ) ∩ (K( ˜Q) ∩ K( ˜R))

(K( ˜P ) ∪ K( ˜Q)) ∪ K( ˜R) = K( ˜P ) ∪ (K( ˜Q) ∪ K( ˜R)).
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Theorem 2: Letting ∩,∪, and 
 be three operators on K(U),
then

1) 
 (K( ˜P ) ∩ K( ˜Q)) = 
K( ˜P ) ∪ 
K( ˜Q), and

2) 
 (K( ˜P ) ∪ K( ˜Q)) = 
K( ˜P ) ∩ 
K( ˜Q).

Proof: For any xi ∈ U,K( ˜P ),K( ˜Q) ∈ K(U), S
P̃

(xi) and
S

Q̃
(xi) are the fuzzy-information granules induced by xi in

K( ˜P ) and K( ˜Q), respectively.
1) According to Definition 1, for ∀xi ∈ U , it follows that


(S
P̃

(xi) ∩ S
Q̃

(xi))=Sω (xi) ∪ ∼(S
P̃

(xi)∩S
Q̃

(xi)). Hence,

for ∀pij from Sω (xi), if j = i, then pij = 1; if j 	= i, then
pij = 0. Thus, if j = i, then max{1, 1 − min{pii , qii}} = 1; if
j 	= i, then max{0, 1 − min{pij , qij}} = 1 − min{pij , qij} =
max{1 − pij , 1 − qij} = max{max{0, 1 − pij}, max{0, 1 −
qij}}. Therefore, 
(K( ˜P ) ∩ K( ˜Q)) = 
K( ˜P ) ∪ 
K( ˜Q) holds.

2) From Definition 1, for ∀xi ∈ U , one has that

(S

P̃
(xi) ∪ S

Q̃
(xi))=Sω (xi) ∪ ∼(S

P̃
(xi) ∪ S

Q̃
(xi)). There-

fore, for ∀pij from Sω (xi), if j = i, then pij = 1; if j 	= i, then
pij = 0. Hence, if j = i, then max{1, 1 − max{pii , qii}} =
1; if j 	= i, then max{0, 1 − max{pij , qij}} = 1 −
max{pij , qij} = min{1 − pij , 1−qij}=min{max{0, 1−pij},
max{0, 1−qij}}. Therefore, 
(K( ˜P ) ∪ K( ˜Q)) = 
K( ˜P ) ∩

K( ˜Q) holds. �

Let K( ˜P ),K( ˜Q) ∈ K(U), where K( ˜P ) = (S
P̃

(x1),
S

P̃
(x2), . . . , SP̃

(xn )), S
P̃

(xi)= pi1/xi+ pi2/xi + · · · + pin/

xi,K( ˜Q) = (S
Q̃

(x1), SQ̃
(x2), . . . , SQ̃

(xn )) and S
Q̃

(xi) =
qi1/xi + qi2/xi + · · · + qin/xi . A partial-order relation 1 is
defined as
K( ˜P ) 1 K( ˜Q)⇔S

P̃
(xi)⊆S

Q̃
(xi), i≤n⇔pij≤qij , i, j ≤ n,

just ˜P 1 ˜Q.
Furthermore, K( ˜P ) = K( ˜Q) ⇔ S

P̃
(xi) = S

Q̃
(xi), i ≤

n ⇔ pij = qij , i, j ≤ n can be written as ˜P = ˜Q.
K( ˜P ) ≺1 K( ˜Q) ⇔ K( ˜P ) 1 K( ˜Q), and K( ˜P ) 	= K( ˜Q),
which is denoted by ˜P ≺1 ˜Q. Clearly, (K(U),1) is a poset.

Theorem 3: Let ∩,∪, and 
 be three operators on K(U), the
following properties hold.

1) If K( ˜P ) 1 K( ˜Q), then 
K( ˜Q) 1 
K( ˜P ).
2) K( ˜P )∩K( ˜Q) 1 K( ˜P ),K( ˜P )∩K( ˜Q) 1 K( ˜Q).
3) K( ˜P ) 1 K( ˜P ) ∪ K( ˜Q),K( ˜Q) 1 K( ˜P ) ∪ K( ˜Q).
Proof: The terms (2) and (3) can be easily proved from (4)

and (5) in Definition 1, respectively.
From Definition 1, one can obtain that

K( ˜P ) 1 K( ˜Q)
=⇒ for ∀xi ∈ U, S

P̃
(xi) ⊆ S

Q̃
(xi), i ≤ n.

=⇒ for ∀xi ∈ U, pij ≤ qij , i, j ≤ n.
=⇒ for ∀xi ∈ U , if j 	= i, then 1 − qij ≤ 1 − pij , i, j ≤ n;

if j = i, then max{1, 1 − qij} = 1 = max{1, 1 − pij}.
=⇒ for ∀xi ∈ U, Sω (xi) ∪ S

P̃
(xi) ⊆ Sω (xi) ∪ S

P̃
(xi).

=⇒ for ∀xi ∈ U, 
S
P̃

(xi) ⊆ 
S
P̃

(xi).
=⇒ 
K(Q) 1 
K(P ).
Hence, the term (1) in this theorem holds. �

Definition 2: Let (L,≤) be a poset, if there exist two operators
∧,∨ on L : L2 −→ L such that

1) a ∧ b = b ∧ a, a ∨ b = b ∨ a;
2) (a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c);
3) a ∧ b = b ⇐⇒ b ≤ a, a ∨ b = b ⇐⇒ a ≤ b.
Then, we call L a lattice.
Furthermore, we call L a complemented lattice, if for any

a ∈ L, there exists a′ such that (a′)′ = a and a ≤ b ⇐⇒ b′ ≤ a′.
If there exist 0, 1 ∈ L such that 0 ≤ a ≤ 1 for any a ∈ L, then
we call 0 and 1 its minimal element and maximal element,
respectively.

Theorem 4: Letting K(U) be the collection of all fuzzy-binary
granular structures on U , then (K(U),∪,∩) is a lattice.

Proof: At first, we prove that (K(U),1) is a lattice.
From 2) and 4) in Theorem 1, the terms 1) and 2) in Definition

2 are obvious.
Let K( ˜P ),K( ˜Q),K( ˜R) ∈ K(U), where K( ˜P ) = (S

P̃
(x1),

S
P̃

(x2), . . . , SP̃
(xn )), K( ˜Q) = (S

Q̃
(x1), S

Q̃
(x2), . . . ,

S
Q̃

(xn )), and K( ˜R) = (S
R̃
(x1), SR̃

(x2), . . . , SR̃
(xn )). One

can obtain that
K( ˜P ) ∩ K( ˜Q) = K( ˜P )

⇐⇒ for ∀xi ∈ U, [xi ]P̃ ∩Q̃
= S

P̃
(xi)

⇐⇒ for ∀xi ∈ U, S
P̃

(xi) ∩ S
Q̃

(xi) = S
P̃

(xi)
⇐⇒ S

P̃
(xi) ⊆ S

Q̃
(xi), for ∀xi ∈ U

⇐⇒ K( ˜P ) 1 K( ˜Q).
According to the dual principle in a lattice, one can easily get

that K( ˜P )∪ K( ˜Q) = K( ˜P ) ⇐⇒ K( ˜Q) 1 K( ˜P ). Thus, the
term (3) in Definition 2 holds.

Therefore, (K,∪,∩) is a lattice. �
Theorem 5: Letting K(U) be the collection of all fuzzy-

binary granular structures on U , then (K(U),∪,∩, 
) is a com-
plemented lattice.

Proof: From Theorem 4, it is obvious that (K(U),∪,∩) is
a lattice. Furthermore, from 1) in Theorem 2, one can get that

(
K( ˜P )) = K( ˜P ). In addition, from 3) in Definition 2, one has
that

K( ˜P ) 1 K( ˜Q)
⇐⇒ for ∀xi ∈ U, S

P̃
(xi) ⊆ S

Q̃
(xi)

⇐⇒ for ∀xi ∈ U,∼ S
P̃

(xi) ⊇∼ S
Q̃

(xi)
⇐⇒ for ∀xi ∈ U, Sω (xi)∪ ∼ S

P̃
(xi) ⊇ Sω (xi)∪ ∼ S

Q̃
(xi)

⇐⇒ for ∀xi ∈ U, 
S
P̃

(xi) ⊇ 
S
Q̃

(xi)

⇐⇒ 
K( ˜Q) 1 
K( ˜P ).
Hence, (K(U),∪,∩, 
) is a complemented lattice. �
In the complemented lattice, (K(U),∪,∩, 
),K(ω), and

K(δ) are two special fuzzy-granular spaces. For any K( ˜P ) ∈
K(U), one has that K(ω) 1 K( ˜P ) 1 K(δ). Then, we call
K(ω) and K(δ) the minimal element and the maximal element
on the lattice (K(U),∪,∩, 
), respectively.

From the above analysis, it is shown that these four operators
(∪,∩, 
, and −) can be applied to generate new fuzzy-binary
granular structures from given fuzzy-binary granular structures.
Therefore, this mechanism may be used for data mining and
knowledge discovery from a family of fuzzy granular structures.
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IV. PARTIAL-ORDER RELATIONS ON

FUZZY-GRANULAR STRUCTURES

To characterize the uncertainty of a granular structure, a par-
tial relation plays a very important role. In this section, through
revealing the drawback of partial-order relations 1 , we will in-
troduce two new partial-order relations in fuzzy-binary granular
structures and establish the relationships among them.

In GrC, measures of information granularity usually take the
size of each of information granules into account [13], [32], [34],
which are used to calculate the degree of granulation of fuzzy
information (or fuzzy knowledge). Clearly, the partial-order re-
lation 1 cannot characterize the size nature of information
granules. Based on this consideration, we introduce the follow-
ing binary relation.

Definition 3: Let K( ˜P ),K( ˜Q) ∈ K(U), where K( ˜P ) =
(S

P̃
(x1), SP̃

(x2), . . . , SP̃
(xn )), S

P̃
(xi) = pi1/xi + pi2/xi +

· · · + pin/xi,K( ˜Q) = (S
Q̃

(x1), SQ̃
(x2), . . . , SQ̃

(xn )), and

S
Q̃

(xi) = qi1/xi + qi2/xi + · · · + qin/xi . One defines a bi-

nary relation 2 as K( ˜P ) 2 K( ˜Q) ⇔ |S
P̃

(xi)| ≤ |S
Q̃

(xi)|,
i ≤ n, where |S

P̃
(xi)| =

∑n
j=1 pij , |SQ̃

(xi)| =
∑n

j=1 qij , and
˜P 2 ˜Q.

Furthermore, K( ˜P ) � K( ˜Q) ⇔ |S
P̃

(xi)| = |S
Q̃

(xi)|, i ≤
n, and ˜P � ˜Q. K( ˜P ) ≺2 K( ˜Q) ⇔ K( ˜P ) 2 K( ˜Q) and
K( ˜P ) 	� K( ˜Q) should be written as ˜P ≺2 ˜Q.

Theorem 6: Letting K(U) be the collection of all fuzzy-binary
granular structures on U , then (K(U),2) is a poset.

Proof: Let K( ˜P ),K( ˜Q),K( ˜R) ∈ K(U),K( ˜P ) =
(S

P̃
(x1), SP̃

(x2), . . . , SP̃
(xn )),K( ˜Q) = (S

Q̃
(x1), SQ̃

(x2),

. . . , S
Q̃

(xn )), and K( ˜R) = (S
R̃
(x1), SR̃

(x2), . . . , SR̃
(xn )).

1) For arbitrary x ∈ U , we have |S
P̃

(xi)| = |S
P̃

(xi)|, and

hence, ˜P 2 ˜P .
2) Suppose that ˜P 2 ˜Q and ˜Q 2 ˜P . From Definition 3, it

follows that

˜P 2 ˜Q ⇔ |S
P̃

(xi)| ≤ |S
Q̃

(xi)|, i ≤ n

and

˜Q 2 ˜P ⇔ |S
Q̃

(xi)| ≤ |S
P̃

(xi)|, i ≤ n.

Therefore, we have that |S
P̃

(xi)| ≤ |S
Q̃

(xi)| ≤ |S
P̃

(xi)|,
i.e., |S

P̃
(xi)| = |S

Q̃
(xi)|. Thus, for every i ≤ n, one has

|S
P̃

(xi)| = |S
Q̃

(xi)|, i.e., ˜P � ˜Q.

3) Suppose that ˜P 2 ˜Q and ˜Q 2 ˜R. It follows from Defi-
nition 3 that

˜P 2 ˜Q ⇔ |S
P̃

(xi)| ≤ |S
Q̃

(xi)|, i ≤ n

and

˜Q 2 ˜R ⇔ |S
Q̃

(xi)| ≤ |S
R̃
(xi)|, i ≤ n.

Therefore, we obtain that |S
P̃

(xi)| ≤ |S
Q̃

(xi)| ≤ |S
R̃
(xi)|,

i ≤ n, i.e., |S
P̃

(xi)| ≤ |S
R̃
(xi)|. Hence, ˜P 2 ˜R.

Summarizing (1)–(3), (K(U),2) is a poset. �

Theorem 7: The partial-order relation 1 is a special instance
of partial relation 2 .

Proof: Suppose that K( ˜P ),K( ˜Q) ∈ K(U) with
˜P 1 ˜Q,K( ˜P ) = (S

P̃
(x1), SP̃

(x2), . . . , SP̃
(xn )),K( ˜Q) =

(S
Q̃

(x1), SQ̃
(x2), . . . , SQ̃

(xn )); S
P̃

(xi) = pi1/xi + pi2/xi +
· · · + pin/xi , and S

Q̃
(xi) = qi1/xi + qi2/xi + · · · + qin/xi .

Since ˜P 1 ˜Q, one knows S
P̃

(xi) ⊆ S
Q̃

(xi), i ≤ n ⇔
pij ≤ qij , i, j ≤ n. Thus, for arbitrary i ≤ n, one has
|S

P̃
(xi)| ≤ |S

Q̃
(xi)|, where |S

P̃
(xi)| =

∑n
j=1 pij , |SQ̃

(xi)| =
∑n

j=1 qij . It is clear that ˜P 2 ˜Q.
Therefore, partial-order relation 1 is a special instance of

partial-order relation 2 . �
Example 1: Let K( ˜P ) = (S

P̃
(x1), SP̃

(x2), SP̃
(x3),

S
P̃

(x4)), K( ˜Q) = (S
Q̃

(x1), S
Q̃

(x2), S
Q̃

(x3), S
Q̃

(x4)),
|S

P̃
(x1)| = 3, |S

P̃
(x2)| = 4, |S

P̃
(x3)| = 1, |S

P̃
(x4)| = 3, and

|S
Q̃

(x1)| = 2, |S
Q̃

(x2)| = 3, |S
Q̃

(x3)| = 4, |S
Q̃

(x4)| = 3.
From the values of these fuzzy neighborhoods and the def-

inition of 2 , we know that K( ˜P ) 	2 K( ˜Q). However, it is
obvious that K( ˜Q) has a much coarser granularity than K( ˜P ).
Hence, it is desirable to develop a new partial order relation.

If we rearrange the rank of those information gran-
ules in K( ˜Q), one can obtain such a rank: K ′( ˜Q) =
(S

Q̃
(x2), SQ̃

(x3), SQ̃
(x1), SQ̃

(x4)). From this point of view,
we can differentiate the fuzzy-information granularity of these
two fuzzy granular structures.

Definition 4: Let K( ˜P ),K( ˜Q) ∈ K(U), where K( ˜P ) =
(S

P̃
(x1), SP̃

(x2), . . . , SP̃
(xn )), S

P̃
(xi) = pi1/xi + pi2/xi +

· · · + pin/xi,K( ˜Q) = (S
Q̃

(x1), SQ̃
(x2), . . . , SQ̃

(xn )), and

S
Q̃

(xi) = qi1/xi + qi2/xi + · · · + qin/xi . One defines a

binary relation 3 as K( ˜P ) 3 K( ˜Q) ⇔ for K( ˜P ), where
there exists a sequence K ′( ˜Q) of K( ˜Q) such that |S

P̃
(xi)| ≤

|S
Q̃

(xi)|, i ≤ n, and ˜P 3 ˜Q, where K ′( ˜Q) = (S
Q̃

(x′
1),

S
Q̃

(x′
2), . . . , SQ̃

(x′
n )).

In particular, K( ˜P ) ≈ K( ˜Q) ⇔ |S
P̃

(xi)| = |S
Q̃

(x′
i)|, i ≤

n, which is simply denoted by ˜P ≈ ˜Q. K( ˜P ) ≺3 K( ˜Q) ⇔
K( ˜P ) 3 K( ˜Q) and K( ˜P ) 	≈ K( ˜Q) and written ˜P ≺3 ˜Q.

Theorem 8: Let K(U) be the collection of all fuzzy-binary
granular structures on U , then (K(U),3) is a poset.

Proof: Letting K( ˜P ),K( ˜Q),K( ˜R) ∈ K(U),K( ˜P ) =
(S

P̃
(x1), S

P̃
(x2), . . . , SP̃

(xn )), K( ˜Q) = (S
Q̃

(x1), SQ̃
(x2),

. . . , S
Q̃

(xn )), and K( ˜R) = (S
R̃
(x1), SR̃

(x2), . . . , SR̃
(xn )).

1) For arbitrary x ∈ U, |S
P̃

(xi)| = |S
P̃

(xi)| holds, and

hence, ˜P 3 ˜P .
2) Suppose that ˜P 3 ˜Q and ˜Q 3 ˜P . It follows from

Definition 4 that ˜P 3 ˜Q ⇔ for K( ˜P ) and that there ex-
ists a sequence K ′( ˜Q) of K( ˜Q), where K ′( ˜Q) = (S

Q̃
(x′

1),
S

Q̃
(x′

2), . . . , SQ̃
(x′

n )), such that |S
P̃

(xi)| ≤ |S
Q̃

(x′
i)|, i ≤ n.

˜Q 3 ˜P ⇔ for K( ˜Q), and there exists a sequence K ′( ˜P ) of
K( ˜P ) such that |S

Q̃
(xi)| ≤ |S

P̃
(x′

i)|, i ≤ n, where K ′( ˜P ) =
(S

P̃
(x′

1), SP̃
(x′

2), . . . , SP̃
(x′

n )).
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Therefore, we have that

n
∑

i=1

|S
P̃

(xi)| ≤
n

∑

i=1

|S
Q̃

(x′
i)| =

n
∑

i=1

|S
Q̃

(xi)| ≤
n

∑

i=1

|S
P̃

(x′
i)| .

In addition, from
∑n

i=1 |SP̃
(xi)| =

∑n
i=1 |SP̃

(x′
i)|,

one knows
∑n

i=1 |SP̃
(xi)| =

∑n
i=1 |SQ̃

(x′
i)|. Considering

|S
P̃

(xi)| ≤ |S
Q̃

(x′
i)|, we have |S

P̃
(xi)| = |S

Q̃
(x′

i)|. Hence,

for arbitrary i ≤ n, it follows that |S
P̃

(xi)| = |S
Q̃

(x′
i)|, i.e.,

˜P ≈ ˜Q.
3) Suppose that ˜P 3 ˜Q and ˜Q 3 ˜R. From Definition

4, it follows that ˜P 3 ˜Q ⇔ for K( ˜P ), and there ex-
ists a sequence K ′( ˜Q) of K( ˜Q), where K ′( ˜Q) = (S

Q̃
(x′

1),
S

Q̃
(x′

2), . . . , SQ̃
(x′

n )), such that |S
P̃

(xi)| ≤ |S
Q̃

(x′
i)|, i ≤ n.

˜Q 3 ˜R ⇔ for K( ˜Q), and there exists a sequence K ′( ˜R) of
K( ˜R), where K ′( ˜R) = (S

R̃
(x′

1), SR̃
(x′

2), . . . , SR̃
(x′

n )), such
that |S

Q̃
(xi)| ≤ |S

R̃
(x′

i)|, i ≤ n.

Hence, for the sequence K ′( ˜Q), there must exist a se-
quence K ′′( ˜R) of K( ˜R) such that |S

Q̃
(x′

i)| ≤ |S
R̃
(x′′

i )|, where

K ′′( ˜R) = (S
R̃
(x′′

1), SR̃
(x′′

2), . . . , SR̃
(x′′

n )).
Therefore, for K( ˜P ), there exists the sequence K ′′( ˜R) of

K( ˜R) such that |S
P̃

(xi)| ≤ |S
R̃
(x′′

i )|, i.e., ˜P 3 ˜R.
Summarizing the above, (K(U),3) is a poset. �
Theorem 9: Partial-order relation 2 is a special instance of

partial relation 3 .
Proof: Suppose that K( ˜P ),K( ˜Q) ∈ K(U) with ˜P 2

˜Q,K( ˜P ) = (S
P̃

(x1), SP̃
(x2), . . . , SP̃

(xn )), and K( ˜Q) =
(S

Q̃
(x1), SQ̃

(x2), . . . , SQ̃
(xn )).

Since ˜P 2 ˜Q, one knows that |S
P̃

(xi)| ≤ |S
Q̃

(xi)|, i ≤ n.

That is to say, there exists a sequence such that |S
P̃

(xi)| ≤
|S

Q̃
(xi)|, i ≤ n. Hence, ˜P 3 ˜Q.

Therefore, partial-order relation 2 is a special instance of
partial-order relation 3 . �

Corollary 1: Partial-order relation 1 is a special instance of
partial relation 3 .

From Theorems 7 and 9 and Corollary 1, one can draw the
conclusion that the partial-order relation 3 is the best to char-
acterize the nature of granulation of fuzzy information (or fuzzy
knowledge).

V. FUZZY-INFORMATION GRANULARITY

As we know, information granularity, in a broad sense, is
the average measure of information (knowledge) granules of
a granular structure [13], [34]. It can be used to characterize
the classification ability of a granular structure. In fuzzy-binary
granular structures, a fuzzy-information granularity plays the
same role, which should also be used to depict the classification
ability of a fuzzy-binary granular structure. In this section, we
develop two measures to evaluate the degree of granulation of a
fuzzy-binary granular structure.

From the viewpoint of sizes of information granules, in the
following, we introduce a definition of fuzzy-information gran-
ularity of a fuzzy-binary granular structure.

Definition 5: [3] Let K( ˜R) = (S
R̃
(x1), SR̃

(x2), . . . ,
S

R̃
(xn )). Then, fuzzy-information granularity of ˜R is defined

as

GK( ˜R) =
1
n

n
∑

i=1

|S
R̃
(xi)|
n

(8)

where |S
R̃
(xi)| is the cardinality of the fuzzy information gran-

ule S
R̃
(xi).

Theorem 10: Let U/R = {X1 ,X2 , . . . , Xm} be a Pawlak
granular structure. Then, the fuzzy-information granularity of
R degenerates to the information granularity

GK(R) =
1
n2

m
∑

k=1

|Xk |2 (9)

where
∑m

i=1 |Xi |2 is the number of objects in the equivalence
relation induced by ∪m

i=1(Xi × Xi).
Proof: Let us denote K( ˜R) = (S

Ã
(x1), SR̃

(x2),
. . . , S

Ã
(xn )), and S

R̃
(xi) = ai1/xi + ai2/xi + · · · + ain/xi .

For an equivalence relation R, as we know, if R(x, y) = 1 and
R(y, z) = 1, then R(x, z) = 1. That is to say aij = aji = 1
or 0, j ≤ n. Let Xk = {xk1 , xk2 , . . . , xksk

}, k ≤ m, where
|Xk | = |SR (xkl)| = sk , l ≤ sk , and

∑m
k=1 sk = n. Hence

1
n2

m
∑

k=1

|Xk |2

=
1
n2

m
∑

k=1

(|SR (xk1)| + |SR (xk2)| + · · · + |SR (xksk
)|)

=
1
n2

n
∑

i=1

n
∑

j=1

aij =
1
n

n
∑

i=1

∑n
j=1 aij

n

=
1
n

n
∑

i=1

|S
R̃
(xi)|
n

= GK( ˜R).

This completes the proof. �
From Theorem 10, it follows that the information granularity

in a Pawlak knowledge base is a special instance of fuzzy-
information granularity in fuzzy-binary granular structures.

Theorem 11: Letting K( ˜P ),K( ˜Q) ∈ K(U). If K( ˜P ) ≺1

K( ˜Q), then GK( ˜P ) < GK( ˜Q).
Theorem 12: Letting K( ˜P ),K( ˜Q) ∈ K(U). If K( ˜P ) ≺2

K( ˜Q), then GK( ˜P ) < GK( ˜Q).
Theorem 13: Letting K( ˜P ) ∈ K(U), then GK( ˜P ) +

GK(
 ˜P ) = 1 + 1
n .

Proof: From Definition 1, one can easily see that

S

P̃
(xi) = Sω (xi)∪ ∼ S

P̃
(xi). Letting S

P̃
(xi) = pi1/xi +

pi2/xi + · · · + pin/xi , one has that ∼ S
P̃

(xi) = (1 −
pi1)/xi + (1 − pi2)/xi + · · · + (1 − pin )/xi . Since Sω (xi) =
pi1/xi + pi2/xi + · · · + pi(i−1)/xi + 1/xi + pi(i+1)/xi + · · ·
+ pin/xi , where pij = 0, i 	= j, we have that for ∀pij , if j = i,
then max{1, 1 − max{1, 1 − 1}} = 1; if j 	= i, then max{0,
1 − max{0, 1 − pij}} = pij . Hence, 
(
S

P̃
(xi)) = Sω (xi)∪ ∼

(Sω (xi)∪ ∼ S
P̃

(xi)) = S
P̃

(xi), i.e., 
(
K( ˜P )) = K( ˜P ). �
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In rough-set theory, there is a kind of especial uncertainty,
i.e., roughness [13], [29]. For a given granular structure, we
need to assess its roughness for a target concept or a target de-
cision. An uncertainty measure, which is called rough entropy,
is always employed to calculate roughness degree of a granu-
lar structure. Liang et al. [13] introduced the concept of rough
entropy to measure the roughness degree of a granular struc-
ture. Like the opinion proposed by Qian et al. [34], each of the
rough entropies also can be induced as an information granu-
larity. The following definition gives the depiction of the rough
entropy.

Definition 6: [13] Let K(R) = (SR (x1), SR (x2),
. . . , SR (xn )) be a tolerance granular structure. Then, the
rough entropy of R is defined as

Er (R) = −
n

∑

i=1

1
n

log2
1

|SR (xi)|
. (10)

Due to the property of the above rough entropy that can
be used to measure information granularity, we can con-
struct the definition of fuzzy rough entropy of a family of
fuzzy-binary granular structures, which is used to character-
ize the fuzzy-information granularity of a fuzzy-binary granular
structure.

Definition 7: Let K( ˜R) = (S
R̃
(x1), SR̃

(x2), . . . , SR̃
(xn )).

Then, fuzzy-information granularity of ˜R is defined as

Er ( ˜R) = −
n

∑

i=1

1
n

log2
1

|S
R̃
(xi)|

. (11)

Theorem 14: Let U/R = {X1 ,X2 , . . . , Xm} be a Pawlak
granular structure. Then, the fuzzy-information granularity of
R degenerates to the rough entropy

Er (R) = −
m

∑

k=1

|Xk |
n

log2
1

|Xk |
. (12)

Proof: Let K( ˜R) = (S
R̃
(x1), SR̃

(x2), . . . , SR̃
(xn )), S

R̃
(xi)

= ai1/xi + ai2/xi + · · · + ain/xi . For an equivalence relation
R, we know that if R(x, y) = 1 and R(y, z) = 1, then R(x, z) =
1. In other words, aij = aji = 1 or 0, j ≤ n. We denote Xk =
{xk1 , xk2 , . . . , xksk

}, k ≤ m, where |Xk | = |[xkl ]R | = sk , l ≤
sk , and

∑m
k=1 sk = n. Therefore

−
m

∑

k=1

|Xk |
n

log2
1

|Xk |

= −
m

∑

k=1

(

1
n

log2
1

|SR (xk1)|
+

1
n

log2
1

|SR (xk2)|
+ · · ·

+
1
n

log2
1

|SR (xksk
)|

)

=
m

∑

k=1

(

1
n

log2 |SR (xk1)| +
1
n

log2 |SR (xk2)| + · · ·

+
1
n

log2 |SR (xksk
)|
)

=
1
n

log2 |SR (x1)| +
1
n

log2 |SR (x2)| + · · · + 1
n

log2 |SR (xn )|

= −
(

1
n

log2
1

|SR (x1)|
+

1
n

log2
1

|SR (x2)|
+ · · ·

+
1
n

log2
1

|SR (xn )|

)

= −
n

∑

i=1

1
n

log2
1

|S
R̃
(xi)|

= Er ( ˜R).

This completes the proof. �
Theorem 13 shows that the rough entropy in Pawlak knowl-

edge bases is a special case of the fuzzy-information granularity
in a family of fuzzy-binary granular structures.

Theorem 15: Letting K( ˜P ),K( ˜Q) ∈ K(U). If K( ˜P ) ≺1

K( ˜Q), then Er ( ˜P ) < Er ( ˜Q).
Theorem 16: Letting K( ˜P ),K( ˜Q) ∈ K(U). If K( ˜P ) ≺2

K( ˜Q), then Er ( ˜P ) < Er ( ˜Q).

VI. AXIOMATIC APPROACH TO

FUZZY-INFORMATION GRANULARITY

In recent years, some researchers have already started to
pay attention to such the problem of what is the essence of
information granularity in (crisp) granular structures. Liang
and Qian [11] attempted to unify the definitions by some ax-
iomatic approaches in granular structures. Qian et al. [34] de-
veloped a more reasonable and comprehensive form of ax-
iomatic definition of information granularity. In this section,
we will propose an axiomatic definition to fuzzy information
granularity.

By employing the partial-order relation 3 , we give
the following axiomatic constraint to define a fuzzy-
information granularity in the context of fuzzy-binary granular
structures.

Definition 8: Letting K(U) be the collection of all fuzzy-
binary granular structures on U if, for ∀K( ˜P ) ∈ K(U), there is
a real number G( ˜P ) with the following properties:

1) G( ˜P ) ≥ 0 (nonnegative);
2) for ∀K( ˜P ),K( ˜Q) ∈ K(U), if K( ˜P ) ≈ K( ˜Q), then

G( ˜P ) = G( ˜Q) (invariability);
3) for ∀K( ˜P ),K( ˜Q) ∈ K(U), if K( ˜P ) ≺3 K( ˜Q), then

G( ˜P ) < G( ˜Q) (monotonicity);
then G is called a fuzzy-information granularity.
As a result of the above discussions, we come to the following

four theorems.
Theorem 17: (Extremum) Letting K(U) be the collection of

all fuzzy-binary granular structures on U,K( ˜P ) ∈ K(U), then
G( ˜P ) achieves its minimum value if K( ˜P ) = ω, and G( ˜P )
achieves its maximum value if K( ˜P ) = δ.
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Proof: Given arbitrary ˜P ∈ ˜R, one get its fuzzy-relation ma-
trix

M( ˜P ) =

⎛

⎜

⎝

p11 p12 · · · p1n

p21 p22 · · · p2n

· · · · · · · · · · · ·
pn1 pn2 · · · pnn

⎞

⎟

⎠

From the definition of K(ω), it is obvious that |Sω (xi)| = 1 ≤
|S

P̃
(xi)|, i.e., ω 3 ˜P . Similarly, it follows from the defini-

tion of K(δ) that |S
P̃

(xi)| ≤ |Sδ (xi)| = |U |, that is, ˜P 3 δ.
Therefore, from 2) and 3) in Definition 8, one knows that
G(ω) ≤ G( ˜P ) ≤ G(δ). This completes the proof. �

From Definition 8 and Theorem 17, it is easy to see that the
size of G( ˜P ) only depends on the cardinality of every fuzzy in-
formation granule in the fuzzy-binary granular structure K( ˜P ).

Theorem 18: Letting K( ˜P ),K( ˜Q) ∈ K(U), then G( ˜P ) ≤
G( ˜Q) if K( ˜P ) 1 K( ˜Q).

Theorem 19: Letting K( ˜P ),K( ˜Q) ∈ K(U), then G( ˜P ) ≤
G( ˜Q) if K( ˜P ) 2 K( ˜Q).

The following theorem reveals several important properties
of the fuzzy-information granularity G.

Theorem 20: The following properties hold:
1) G( ˜P ) = G(
 
 ˜P );
2) G( ˜P ∩ ˜Q) ≤ G( ˜P ), G( ˜P ∩ ˜Q) ≤ G( ˜Q); and
3) G( ˜P ) ≤ G( ˜P ∪ ˜Q), G( ˜Q) ≤ G( ˜P ∪ ˜Q).
Proof: They are straightforward. �
In what follows, we observe whether GK in Definition 5 and

Er in Definition 7 satisfy the proposed axiomatic definition of
fuzzy information granularity or not.

Theorem 21: GK in Definition 5 is a fuzzy-information gran-
ularity under Definition 8.

Proof: 1) Obviously, it is nonnegative.
2) Letting K( ˜P ), K( ˜Q) ∈ K(U), K( ˜P ) = (S

P̃
(x1),

S
P̃

(x2), . . . , SP̃
(xn )), K( ˜Q) = (S

Q̃
(x1), S

Q̃
(x2), . . . ,

S
Q̃

(xn )). If ˜P ≈ ˜Q, then there exists a sequence K ′( ˜Q) of

K( ˜Q), where K ′( ˜Q) = (S
Q̃

(x′
1), SQ̃

(x′
2), . . . , SQ̃

(x′
n )), such

that |S
P̃

(xi)| = |S
Q̃

(x′
i)|, i ≤ n. Therefore

GK( ˜P ) =
1
n

n
∑

i=1

|S
P̃

(xi)|
n

=
1
n

n
∑

i=1

|S
Q̃

(x′
i)|

n

=
1
n

n
∑

i=1

|S
Q̃

(xi)|
n

= GK( ˜Q).

3) Letting K( ˜P ),K( ˜Q) ∈ K(U) with ˜P ≺3 ˜Q, then there
exists a sequence K ′( ˜Q) of K( ˜Q), where K ′( ˜Q) = (S

Q̃
(x′

1),
S

Q̃
(x′

2), . . . , SQ̃
(x′

n )), such that |S
P̃

(xi)| ≤ |S
Q̃

(x′
i)|, i ≤ n,

and there exists x0 ∈ U such that |S
P̃

(x0)| < |S
Q̃

(x′
0)|. Hence

GK( ˜P ) =
1
n

n
∑

i=1

|S
P̃

(xi)|
n

=
1
n

( n
∑

i=1,xi 	=x0

|S
P̃

(xi)|
n

+
|S

P̃
(x0)|
n

)

<
1
n

( n
∑

i=1,xi 	=x0

|S
Q̃

(x′
i)|

n
+

|S
Q̃

(x′
0)|

n

)

=
1
n

n
∑

i=1

|S
Q̃

(xi)|
n

= GK( ˜Q)

i.e.,GK( ˜P ) < GK( ˜Q).

Summarizing the above, GK in Definition 5 is a fuzzy-
information granularity under Definition 8. �

Theorem 22: Er in Definition 7 is a fuzzy-information gran-
ularity under Definition 8.

Proof: 1) Obviously, it is nonnegative.
2) Let K( ˜P ),K( ˜Q) ∈ K(U),K( ˜P ) = (S

P̃
(x1), SP̃

(x2),
. . . , S

P̃
(xn )),K( ˜Q) = (S

Q̃
(x1), SQ̃

(x2), . . . , SQ̃
(xn )). If

˜P ≈ ˜Q, then there exists a sequence K ′( ˜Q) of K( ˜Q),
where K ′( ˜Q) = (S

Q̃
(x′

1), SQ̃
(x′

2), . . . , SQ̃
(x′

n )), such that

|S
P̃

(xi)| = |S
Q̃

(x′
i)|, i ≤ n. Therefore

Er ( ˜P ) = −
n

∑

i=1

1
n

log2
1

|S
P̃

(xi)|
= −

n
∑

i=1

1
n

log2
1

|S
Q̃

(x′
i)|

= −
n

∑

i=1

1
n

log2
1

|S
Q̃

(xi)|
= Er ( ˜Q).

3) Letting K( ˜P ),K( ˜Q) ∈ K(U), with ˜P ≺3 ˜Q, then
there exists a sequence K ′( ˜Q) of K( ˜Q), where K ′( ˜Q) =
(S

Q̃
(x′

1), SQ̃
(x′

2), . . . , SQ̃
(x′

n )), such that |S
P̃

(xi)| ≤
|S

Q̃
(x′

i)|, i ≤ n, and there exists x0 ∈ U such that

|S
P̃

(x0)| < |S
Q̃

(x′
0)|. Hence

Er ( ˜P ) = −
n

∑

i=1

1
n

log2
1

|S
P̃

(xi)|
=

n
∑

i=1

1
n

log2 |SP̃
(xi)|

=
1
n

n
∑

i=1xi 	=x0

log2 |SP̃
(xi)| +

1
n

log2 |SP̃
(x0)|

<
1
n

n
∑

i=1xi 	=x0

log2 |SQ̃
(xi)| +

1
n

log2 |SQ̃
(x0)|

= −
n

∑

i=1

1
n

log2
1

|S
P̃

(xi)|
= Er ( ˜Q)

i.e., Er ( ˜P ) < Er ( ˜Q).
From the above, we conclude that Er in Definition 7 is a

fuzzy-information granularity under Definition 8. �

VII. FUZZY-INFORMATION ENTROPY AND ITS

GRANULATION MONOTONICITY

In physics, entropy is often used to measure out-of-order de-
gree of a system. The bigger entropy value is, the higher out of
order of a system will be. Shannon introduced the concept of
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entropy in physics to information theory to measure uncertainty
of the structure of a system [40]. The entropy is called informa-
tion entropy, which can be used to measure information content
of an information system.

In the framework of granular structures, Liang et al. [13] es-
tablished the relationship between information entropy, rough
entropy, and information granulation in Pawlak/tolerance gran-
ular structures. Qian et al. [37] proved that the existing informa-
tion entropies all satisfy the granulation monotonicity of an in-
formation granularity. Hu et al. [3] extended Shannon’s entropy
to a fuzzy-granular structure and used this variant to charac-
terize the uncertainty of fuzzy rough sets and fuzzy-probability
rough sets. Hence, in this section, we will discuss how to mea-
sure the uncertainty of a fuzzy-granular structure using entropy
theory and establish the relationship between fuzzy-information
entropy and fuzzy-information granularity. It is noted that the
entropy in this paper represents information entropy but not
fuzzy entropy to measure fuzziness of a fuzzy set.

Definition 9: [40] Letting U/R = {X1 ,X2 , . . . , Xm} with
the probability distribution pi = |Xi |/n, one then calls

H(R) = −
m

∑

i=1

pi log2pi (13)

the information entropy of the Pawlak granular structure. When
pi = 0, 0 · log20 = 0.

Because that Shannon’s entropy is defined by the probabil-
ity of each equivalence class, it cannot be used to measure the
uncertainty of a fuzzy-granular structure. For the considera-
tion, Hu et al. [3] extended Shannon’s entropy to fuzzy-binary
granular structures, and used this variant to characterize the
uncertainty of fuzzy rough sets and fuzzy probability rough
sets. Conveniently, information entropy to measure uncertainty
of a fuzzy-binary granular structure is called fuzzy-information
entropy, which denotes the size of information content of a
fuzzy-granular structure.

Definition 10: [3] Letting K( ˜R) = (S
R̃
(x1), SR̃

(x2),
. . . , S

R̃
(xn )), then fuzzy-information entropy of ˜R is defined

as

H( ˜R) = − 1
n

n
∑

i=1

log2
|S

R̃
(xi)|
n

. (14)

In fact, for a Pawlak granular structure, the fuzzy-information
entropy will degenerate to the form of Shannon’s entropy. That
is to say, the definition with a uniform configuration also can be
used to measure the uncertainty of a Pawlak granular structure.
In what follows, we examine whether the fuzzy-information
entropy H( ˜A) satisfies monotonicity or not.

Theorem 23: Let K( ˜P ),K( ˜Q) ∈ K(U). If K( ˜P ) ≺3 K( ˜Q),
then H( ˜Q) < H( ˜P ).

Proof: Let us denote K( ˜P ) = (S
P̃

(x1), SP̃
(x2),

. . . , S
P̃

(xn )), and K( ˜Q) = (S
Q̃

(x1), SQ̃
(x2), . . . , SQ̃

(xn )).

If ˜P ≺3 ˜Q, then there exists a sequence K ′( ˜Q) of K( ˜Q),
where K ′( ˜Q) = (S

Q̃
(x′

1), SQ̃
(x′

2), . . . , SQ̃
(x′

n )), such that

|S
P̃

(xi)| ≤ |S
Q̃

(x′
i)|, i ≤ n, and there exists x0 ∈ U such that

|S
P̃

(x0)| < |S
Q̃

(x′
0)|. Therefore

H( ˜P ) = − 1
n

n
∑

i=1

log2
|S

P̃
(xi)|
n

= − 1
n

n
∑

i=1,xi 	=x0

log2
|S

P̃
(xi)|
n

− 1
n

log2
|S

P̃
(x0)|
n

> − 1
n

n
∑

i=1,xi 	=x0

log2

|S
Q̃

(xi)|
n

− 1
n

log2

|S
Q̃

(x0)|
n

= − 1
n

n
∑

i=1

log2

|S
Q̃

(xi)|
n

= H( ˜Q).

It is clear that H( ˜Q) < H( ˜P ). �
For convenience, we call the monotonicity of entropy induced

by partial-order relation 3 fuzzy-granulation monotonicity.
Theorem 24: Let K( ˜P ),K( ˜Q) ∈ K(U). If K( ˜P ) ≺1 K( ˜Q),

then H( ˜P ) > H( ˜Q).
Theorem 25: Let K( ˜P ),K( ˜Q) ∈ K(U). If K( ˜P ) ≺2 K( ˜Q),

then H( ˜P ) > H( ˜Q).
Liang et al. [13] developed a new measure in a tolerance

granular structure through generalizing the information entropy,
which has been successfully used to depict uncertainty of a
tolerance granular structure.

Definition 11: [13] Letting K(R) = (SR (x1), SR (x2),
. . . , SR (xn )) be a tolerance granular structure, then informa-
tion entropy of R is defined as

E(R) =
n

∑

i=1

1
n

(

1 − |SR (xi)|
n

)

. (15)

Similar to Shannon’s entropy, Liang’s information entropy
E also encounters the same challenge for dealing with fuzzy-
granular structures. In the following definition, we define an-
other form of fuzzy-information entropy.

Definition 12: Letting K( ˜R) = (S
R̃
(x1), SR̃

(x2),
. . . , S

R̃
(xn )), then fuzzy-information entropy of ˜R is

constructed by

E( ˜R) =
n

∑

i=1

1
n

(

1 −
|S

R̃
(xi)|
n

)

. (16)

The proposed fuzzy-information entropy of a fuzzy-binary
granular structure has several nice properties. From the above
point of view, one can give the definition of joint entropy be-
tween two fuzzy-granular structures. Letting K( ˜P ),K( ˜Q) ∈
K(U), the joint entropy of ˜P and ˜Q is formalized as

E( ˜P ; ˜Q) =
n

∑

i=1

1
n

(

1 −
|S

P̃
(xi) ∩ S

Q̃
(xi)|

n

)

(17)

and, its condition entropy can be defined as

E( ˜P | ˜Q) =
n

∑

i=1

1
n

(

|S
Q̃

(xi)|
n

−
|S

P̃
(xi) ∩ S

Q̃
(xi)|

n

)

.

(18)
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Similar to the property of Shannon entropy, the relationship
among above three concepts can be formalized as

E( ˜P | ˜Q) = E( ˜P ; ˜Q) − E( ˜P ). (19)

Theorem 26: Let U/R = {X1 ,X2 , . . . , Xm} be a Pawlak
granular structure. Then, the fuzzy-information entropy R gen-
erates to the information entropy

E(R) =
m

∑

k=1

|Xk |
n

(

1 − |Xk |
n

)

. (20)

Proof: Let K( ˜R) = (S
R̃
(x1), SR̃

(x2), . . . , SR̃
(xn )), with

S
R̃
(xi) = ai1/xi + ai2/xi + · · · + ain/xi . For an equiva-

lence relation R, if R(x, y) = 1 and R(y, z) = 1, then
R(x, z) = 1. That is to say, aij = aji = 1 or 0, j ≤ n. Let
us denote Xk = {xk1 , xk2 , . . . , xksk

}, k ≤ m, where |Xk | =
|SR (xkl)| = sk , l ≤ sk , and

∑m
k=1 sk = n. Hence

m
∑

k=1

|Xk |
n

(

1 − |Xk |
n

)

=
m

∑

k=1

(

1
n

(1 − |SR (xk1)|
n

)

+
1
n

(

1 − |SR (xk2)|
n

)

+ · · · + 1
n

(

1 − |SR (xksk
)|

n

))

=
1
n

(

1 − |SR (x1)|
n

)

+
1
n

(

1 − |SR (x2)|
n

)

+ · · · + 1
n

(

1 − |SR (xn )|
n

)

=
n

∑

i=1

1
n

(

1 − |SR (xi)|
n

)

= E( ˜R).

This completes the proof. �
Theorem 23 states that the information entropy E(R) is a

special case of the fuzzy-information entropy E( ˜R) in fuzzy
granular structures.

Using the following theorem, we verify the fuzzy granulation
monotonicity of fuzzy-information entropy E( ˜A).

Theorem 27: Let K( ˜P ),K( ˜Q) ∈ K(U). If K( ˜P ) ≺3 K( ˜Q),
then E( ˜Q) < E( ˜P ).

Proof: Let K( ˜P ) = (S
P̃

(x1), SP̃
(x2), . . . , SP̃

(xn )),
K( ˜Q) = (S

Q̃
(x1), SQ̃

(x2), . . . , SQ̃
(xn )).

If ˜P ≺3 ˜Q, then there exists a sequence K ′( ˜Q) of K( ˜Q),
where K ′( ˜Q) = (S

Q̃
(x′

1), SQ̃
(x′

2), . . . , SQ̃
(x′

n )), such that

|S
P̃

(xi)| ≤ |S
Q̃

(x′
i)|, i ≤ n, and there exists x0 ∈ U such that

|S
P̃

(x0)| < |S
Q̃

(x′
0)|. Therefore

E( ˜P ) =
n

∑

i=1

1
n

(

1 −
|S

P̃
(xi)|
n

)

=
n

∑

i=1,xi 	=x0

1
n

(

1 −
|S

P̃
(xi)|
n

)

+
1
n

(

1 −
|S

P̃
(x0)|
n

)

>
n

∑

i=1,xi 	=x0

1
n

(

1 −
|S

Q̃
(xi)|
n

)

+
1
n

(

1 −
|S

Q̃
(x0)|
n

)

=
n

∑

i=1

1
n

(

1 −
|S

Q̃
(xi)|
n

)

= E( ˜Q).

Obviously, E( ˜Q) < E( ˜P ). This completes the proof. �
Theorem 28: Letting K( ˜P ),K( ˜Q) ∈ K(U). If K( ˜P ) ≺1

K( ˜Q), then E( ˜P ) > E( ˜Q).
Theorem 29: Let K( ˜P ),K( ˜Q) ∈ K(U). If K( ˜P ) ≺2 K( ˜Q),

then E( ˜P ) > E( ˜Q).
From the above analysis, one can draw a conclusion that each

of fuzzy-information entropies satisfies the fuzzy granulation
monotonicity induced by the partial-order relation 3 . From
the viewpoint of fuzzy GrC, it might be better the partial-order
relation 3 to reveal the essence of fuzzy-information granular-
ity than partial-order relations 1 and 2 .

In what follows, we establish the relationship between fuzzy
information entropy and fuzzy-information granularity in the
context of fuzzy-knowledge bases.

Theorem 30: Letting K( ˜R) = (S
R̃
(x1), SR̃

(x2), . . . ,
S

R̃
(xn )), then the relationship between the fuzzy-information

entropy H( ˜R) and the fuzzy rough entropy Er ( ˜R) is depicted
by

H( ˜R) + Er ( ˜R) = log2n. (21)

Theorem 31: Letting K( ˜R) = (S
R̃
(x1), SR̃

(x2), . . . ,
S

R̃
(xn )), then the relationship between the fuzzy-information

entropy E( ˜R) and the fuzzy-information granularity GK( ˜R) is

E( ˜R) + GK( ˜R) = 1. (22)

These two theorems above show that the relationship between
fuzzy-information entropy and fuzzy-information granularity,
in some sense, may be a complement relationship, i.e., they
possess the same capability on depicting the uncertainty of a
fuzzy-granular structure in the context of fuzzy-binary granular
structures.

VIII. CONCLUSION

Zadeh’s seminal work in theory of fuzzy-information gran-
ulation in human reasoning is inspired by the ways in which
humans granulate information and reason with it. Although
many excellent research contributions have been made, there
remains an important issue to be addressed: What is the essence
of measuring a fuzzy-information granularity of a fuzzy-binary
granular structure?
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In this research, to reveal the essence of measuring a fuzzy in-
formation granularity, a partial-order relation with set-size char-
acter has first been introduced, and the relationship between the
proposed partial-order relation and the other two partial-order
relations have been also established. Then, based on this partial
order relation, an axiomatic definition to measure the uncer-
tainty of a fuzzy-binary granular structure has been proposed in
terms of the size of each fuzzy-information granule. The pro-
posed two forms of fuzzy-information granularity are all special
instances under the axiomatic definition. Furthermore, we also
have investigated the theory of fuzzy-information entropy and
proved their granulation monotonicity induced by the proposed
partial-order relation. Note that the relationship between fuzzy-
information entropy and fuzzy information granularity, in some
sense, may be a complement relationship. They possess the
same capability on depicting the uncertainty of a fuzzy-binary
granular structure. These results show that the partial-order re-
lation proposed in this paper may be better for characterizing
the essence of fuzzy-information granularity for measuring un-
certainty of fuzzy-binary granular structures, which will be very
helpful for establishing a uniform framework for GrC.
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